
Integrating Marine Observatories into a System-of-
Systems: Messaging in the US Ocean Observatories

Initiative

Matthew Arrott1, Alan D. Chave2, Claudiu Farcas1, Emilia Farcas1, Jack E. Kleinert3, Ingolf Krueger1,
Michael Meisinger1, John A. Orcutt4, Cheryl Peach4, Oscar Schofield5, Munindar P. Singh6 and Frank L. Vernon4

1 Calit2, University of California at San Diego, La Jolla, CA 92093-0436, USA
2 Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

3 Raytheon Intelligence and Information Systems, Aurora, CO 80011, USA
4 Scripps Institution of Oceanography, La Jolla, CA 92093, USA

5 COOL, Rutgers University, New Brunswick, NJ 08901, USA
6 Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206, USA

Abstract- The Ocean Observatories Initiative (OOI) will
implement ocean sensor networks covering a diversity of oceanic
environments, ranging from the coastal to the deep ocean.
Construction will begin in Fall 2009, with deployment phased
over five years. The integrating feature of the OOI is a
comprehensive Cyberinfrastructure (CI), whose design is based
on loosely-coupled distributed services, and whose elements are
expected to reside throughout the physical components; from
seafloor instruments to autonomous vehicles to deep sea
moorings to shore facilities to computing and storage
infrastructure. The OOI-CI provides novel capabilities for data
acquisition, distribution, modeling, planning and interactive
control of oceanographic experiments. The architecture
comprises six subsystems: four elements address the
oceanographic science- and education-driven operations of the
OOI integrated observatory, and two elements provide core
infrastructure services for the distributed, message-based,
service-oriented integration and communication infrastructure,
as well as the virtualization of computational and storage
resources. All OOI functional capabilities and resources
represent themselves as services to the observatory network, with
precisely defined service access protocols based on message
exchange. This paper presents an overview of the OOI services
and focuses on the strategy for service-oriented integration and
the publish-subscribe model for communication.

I. INTRODUCTION

The US National Science Foundation is initiating a
transformation of ocean science with the Ocean Observatories
Initiative (OOI) [1]. The OOI is designed to provide new,
persistent, interactive capabilities for ocean science, and has a
global physical observatory footprint. The OOI Integrated
Observatory comprises Regional Scale Nodes (RSN) and
Coastal/Global Scale Nodes (CGSN) providing cabled and
buoy observatories with mobile instrument platforms,
respectively.

The OOI Cyberinfrastructure (CI) [7] constitutes the
integrating element of the OOI Integrated Observatory. It links
and binds the physical observatory, computation, storage and
network infrastructure into a coherent system-of-systems. The
core capabilities and the principal objectives of the OOI

Integrated Observatory are collecting real-time data, analyzing
data, modeling the ocean on multiple scales and enabling
adaptive and interactive experimentation within the ocean. A
traditional data-centric CI, in which a central data
management system ingests data and serves them to users on a
query basis, is not sufficient to accomplish the range of tasks
ocean scientists will engage in when the OOI is implemented.
Instead, a highly distributed set of capabilities are required
that facilitate:

• End-to-end data preservation and access,
• End-to-end, human-to-machine and machine-to-machine

control of how data are collected and analyzed,
• Direct, closed loop interaction of models with the data

acquisition process,
• Virtual collaborations created on demand to drive data-

model coupling and share ocean observatory resources
(e.g., instruments, networks, computing, storage and
workflows),

• End-to-end preservation of the ocean observatory process
and its outcomes, and

• Automation of the planning and prosecution of
observational programs.

The OOI CI provides the software services and user

interfaces to support these applications [13]; in addition it
provides the underlying integration infrastructure [14]
consisting of message-based communication, governance and
security frameworks, similar to the role of the operating
system on a computer. The CI also provides the mechanisms
to execute distributed processes anywhere in the network and
connect then into a coherent system of systems.

Section II describes the OOI Integrated Observatory
Services and their Architecture from a high-level view.
Section III describes the Common Operating Infrastructure
(COI) subsystem as the central infrastructure component
providing communication, governance and security to the

0-933957-38-1 ©2009 MTS

Integrated Observatory. In particular, we highlight the
importance of the COI Messaging Service as the integration
framework for the system-of-systems. Section IV provides a
brief summary.

II. INTEGRATED OBSERVATORY SERVICES

Fig. 1 shows a schematic overview of the main properties of
the Integrated Observatory functional design as provided by
the Cyberinfrastructure component. The primary goal is to
support the activities and applications of:

• Scientific Investigation, supporting researchers in the study

of environmental processes though observations,
simulation models and expressive analyses and
visualizations, with results that directly feed back to
improve future observations.

• Education and Participation, supporting education
application developers, educators and the general public
for accessing and understanding OOI resources in ways
suitable for specific target audiences.

• Community Collaboration, enabling OOI users to share
knowledge and resources, and to work together in project
settings and ad hoc communities.

Fig. 1. OOI activities, resources and infrastructure

In support of these activities, a variety of Integrated

Observatory resources of different type and purpose need to
be administered, including:

• Observation Plans, providing activity sequences, service

agreements and resource allocations for observational
campaigns, and similar templates for event-response
behaviors;

• Data Sets, representing observational and derived data and
data products in the form of data archives and real-time
continuous data streams;

• Processes, representing data collection and processing
workflows that arrange multiple steps involving multiple
actors and resources;

• Instruments and marine observatory infrastructure
elements, such as telemetry systems, GPS and data loggers;

• Models, including numerical ocean forecast models and
their configurations, as well as other analysis and event
detection processes;

• Knowledge, representing all metadata, ancillary data,
analysis results, association and correspondence links
between resources, and knowledge captured in ontologies
for semantic mediation purposes.

The support for these activities and resources rests on a

collection of infrastructure services that provide resource
management, interaction, communication and process
execution. The CI Capability Container (see Fig. 1 and Fig. 2)
is the extensible, deployable base unit of CI capabilities. It
hosts all CI application services in support of activities and
resource, infrastructure components and local interfaces; and it
makes them available throughout the Integrated Observatory
network forming a distributed system-of-systems.

The Integrated Observatory’s functional capabilities are
structured into six services networks (i.e., subsystems): four
elements that address the ocean and Earth science- and
education-driven operations of the OOI integrated observatory,
and two elements that provide core infrastructure services for
the distributed, message-based, service-oriented integration
and communication infrastructure and the virtualization of
computational and storage resources.

 The Sensing and Acquisition services network provides
capabilities to interface with and manage distributed seafloor
instrument resources, as well as provide quality control
services. The Data Management services network provides
capabilities to distribute and archive data, including cataloging,
versioning, metadata management, and attribution and
association services. The Analysis and Synthesis services
network provides a wide range of services to users, including
control and archival of models, data analysis and visualization,
event detection services and collaboration capabilities to
enable the creation of virtual laboratories and classrooms. The
Planning and Prosecution services network provides the
ability to plan, simulate and execute observation missions
using taskable instruments; it is the CI component that turns
the OOI into an interactive observatory.

 The remaining two services networks are the Common
Execution Infrastructure (CEI) and the Common Operating
Infrastructure (COI). The CEI provides an elastic computing
framework to initiate, manage and store processes that may
range from initial operations on data at a shore station to the
execution of a complex numerical model on the national
computing infrastructure and on compute clouds. The COI
provides core services to manage distributed shared resources
in a policy-based framework, including a distributed service
infrastructure for the secure, scalable and fault tolerant

operation and federation of the operational domains of
authority comprising the OOI. It includes capabilities to
manage identity and policy, manage any resource’s life cycle,
as well as catalog and repository services for observatory
resources. It also manages interactions with resources on an
end-to-end basis. An efficient messaging and service bus that
incorporates security and governance, and provides
guaranteed delivery, lies at its heart. Service-orientation and
messaging realize loose coupling of components, resulting in
the flexibility and scalability that are key in such a complex
large-scale system-of-systems. All OOI functional capabilities
and resources represent themselves as services to the
observatory network, with precisely defined service access
protocols based on message exchange.

Fig. 2. Capability Container with external interfaces

Fig. 2 depicts a capability container, indicated by the

octagon shape, with interfaces to local resources and to the
network environment. Local resources include physical
resources such as instruments (sensors) and marine
observatory infrastructure, storage resources such as disks and
network drives, and computing resources such as grid nodes,
cloud computing instances, and CPUs on mobile platforms
such as AUVs (Autonomous Underwater Vehicles).
Capability container can also be connected to user interfaces,
external applications and to capability containers in different,
independent facilities that have their own domains of authority
and operation.

No matter where deployed, the capability container provides
all of the infrastructure and application support required for an
installation site within the OOI Integrated Observatory
network. The capability container hosts the six services
networks and their resource interfaces as depicted in the figure.
The footprint of a capability container can vary depending on

the resource constraints of its hosting environment. The
selection of functional capabilities present in a specific
capability container depends on the respective needs and
resource availability at this specific location in the network.
For instance, on an intermittently-connected instrument
platform, instrument access, data acquisition and data
buffering capabilities provided by the Sensing and Acquisition
services are required, while the Analysis and Synthesis
capabilities are not. In contrast, at the core installation sites,
data processing, numerical model integration and event
response behaviors need to be present.

III. COMMON OPERATING INFRASTRUCTURE

The Common Operating Infrastructure (COI) [14] provides
the integration fabric that enables subsystem services to be
composed to manage complex interactions. The Messaging
Service of COI provides dynamic routing and interception
capabilities, a publish-subscribe [11] model for conversations,
and reliable storage and delivery of messages to intended
recipients across the network.

Rich Service Architecture

The COI architecture is based on the Rich Services pattern
[4] a type of Service-Oriented Architecture (SOA) that
provides decoupling between concerns and allows for
hierarchical service composition. As depicted in Fig. 3, a Rich
Service comprises several entities: (a) the Service/Data
Connector, which serves as the sole mechanism for interaction
between the Rich Service and its environment, (b) the
Messenger and the Router/Interceptor, which together form
the communication infrastructure, and (c) the constituent Rich
Services connected to the Messenger and Router/Interceptor
that encapsulate various application and infrastructure
functionalities.

S
er

vi
ce

/D
at

a
C

on
ne

ct
or

Fig. 3. Rich Services pattern

To address service integration, this architecture is organized

around a message-based communication infrastructure. The

Messenger is responsible for message transmission between
communication endpoints. By providing a means for
asynchronous messaging, the Messenger supports the
decoupling of Rich Services. The Router/Interceptor manages
the interception of messages placed on the Messenger and
their routing. This is useful for the injection of policies
governing the integration of a set of services. The
Service/Data Connector encapsulates and hides the internal
structure of the connected Rich Service, and exports only the
description and interfaces that the connected Rich Service
needs to be visible externally. The communication
infrastructure is only aware of the Service/Data Connector,
and does not need to know any other information about the
internal structure of the Rich Service.

Fig. 4 shows the Rich Services pattern applied to the COI
architecture; the other five services networks are encapsulated
as Rich Services connected to the COI messaging
infrastructure (i.e., the Exchange). This shows the central and
integrative role of the COI for the entire Integrated
Observatory system-of-systems. The top of the figure depicts
the infrastructure services that the COI provides to all
subsystems. The COI ensures identity management, pervasive
and consistent governance and policy enforcement, state
management and resource management. It also enables
subsystem services to be composed to handle complex
interactions, and manages the overall service orchestration.
The Router/Interceptor allows for flexible composition
between the infrastructure and application services. In this
way, there is a clear separation between the business logic and
its external constraints. At all abstraction levels, infrastructure
services plugged into the Exchange can modify the interaction
patterns by re-routing, filtering, or modifying exchanged
messages. This feature enables the validation and signing of
messages, and the injection of policies governing the
integration of a set of services.

The Rich Services integration strategy enables constituent
subsystems to evolve independently from the composite
system. Subsystem functionality is exposed to the OOI
network as services with defined access interfaces, and the
only way of interacting within the OOI network is through

messages. Service-orientation and messaging realize loose
coupling of components, resulting in flexibility and scalability.
The complexity of such a large-scale system becomes
manageable through separate concentration on each concern.
Each subsystem focuses on the services that it enables and
assumes that all of the infrastructure services are in place. For
example, when designing the Sensing and Acquisition
subsystem, the architecture team emphasizes concerns related
to instrument control and data acquisition. Instruments can
belong to individuals or the marine operators, while all of the
deployment platforms are under the marine operator’s
authority domain. However, since governance is managed
seamlessly by infrastructure services, and can be abstracted
when designing the Sensing and Acquisition services, these
issues are not of concern to the Sensing and Acquisition
service developers.

Resource Management

Identity
Management

Resource
Collaboration

Resource
Integration

Resource
Lifecycle

Exchange

Governance
Framework

Resource
Repository

Fig. 5. COI Resource Management services

Each service of Fig. 4 is further decomposed according to

the Rich Services pattern. For instance, Fig. 5 shows the
internal decomposition for the Resource Management services.
The Resource Repository service provides references to all
resources known to the OOI CI. Through the Resource
Integration service, resources can participate in interaction
patterns implemented by OOI services (e.g., a storage resource
may be used to record states of various services). The
Resource Collaboration service provides the collaboration
framework between different facilities and the sharing of

Fig. 4. Common Operating Infrastructure services

resources within the OOI federation. The Resource Lifecycle
service provides the means to track and manage resources
throughout their entire lifecycle from development to
decommissioning.

The Rich Services architecture provides resource location
independence while user applications are shielded from the
complexity of the system and the location of resources. The
COI subsystem provides the Resource Management services
that enable seamless use of resources across the entire
Cyberinfrastructure. Via seamless integration of identity and
governance services, the COI architecture supports the
deployment, operation, and distributed management of
thousands of independently-owned resources of various types
(e.g., instruments, processes, numerical models and
simulations) across a core infrastructure operated by
independent stakeholders, where each stakeholder has
different policies.

The COI Messaging Service (Exchange)

The Exchange (i.e., the COI Messaging Service or the
Messenger and Router/Interceptor in the Rich Services
architecture) is the central integrating element of the COI. It
provides access to the communication mechanisms of
Exchange Spaces and Exchange Points throughout the system-
of-systems, abstracting from the physical communication
infrastructure across multiple domains of authority. Client
applications may publish messages on Exchange Points within
Exchange Spaces. An Exchange Space represents a
“community of interest” that collects and controls all of the
Exchange Points in its scope and enforces policy of use for a
registered set of users and applications. An Exchange Point is
represented through a set of named exchanges on one or
multiple AMQP [2] message brokers. Thereby, the Exchange
provides a comprehensive, uniform view of a federation of
message brokers: from the point of view of a
publish/subscribe client (i.e., producers and consumers of
messages), the fact that the messaging system is built as a

federation of independent message brokers and not as a single
broker is hidden.

The CI integration strategy determines how individual
software components integrate into the system-of-systems
through a message-broker integration infrastructure. The
communication system of the OOI CI applies messaging as
the central paradigm of inter-application information exchange,
realizing the Messaging Service, the integrating element of all
services. It is part of the Common Operating Infrastructure
(COI), the subsystem that provides the full set of integration
frameworks and services (see [14]).

Message-oriented middleware (MOM) (see [6], [9]) is based
on the concept of a message as the exclusive means of
information exchange between the distributed components of
a system. All information that is passed between two
components or services is contained in messages exchanged
asynchronously (i.e., non-blocking) over a communication
infrastructure. The sender of a message does not wait for the
message to be delivered or returned; it only waits for the
MOM to acknowledge receipt of the message. Delivering
messages to recipients utilizes the concept of queues. An
application component in a message-oriented architecture only
knows the incoming queues that it receives messages from as
well as the outgoing queues it delivers messages to, plus the
message formats that pertain to these queues. The MOM
provides the capability for system integrators to connect these
queues to known endpoints (i.e., addresses) in the network;
consequently it manages routing, reliable storage and delivery
of messages to intended recipients across the network.
Standardization is on the way for the underlying message wire
transport protocol: the Advanced Message Queuing Protocol
(AMQP) [2] defines the interactions of a message broker with
its clients, promising interoperability between message
brokers of different provenance.

The left part of Fig. 6 depicts the fundamentals of the CI
Messaging Service. Message brokers are the central
infrastructure elements, represented as Exchange Points to all
clients, responsible for the routing and delivery of messages.

Fig. 6. OOI CI Messaging Service architecture (left) and exemplar messaging scenario (right)

Message Clients provide the interfaces to the application logic.
The right part of Fig. 6 provides an exemplar application

scenario within the OOI CI. Capability containers host the
application logic that interconnects using the Messaging
Service. This is exemplified through an Instrument Agent
publishing a raw data stream on an Exchange Point (a queue)
via messaging. Any number of consumers may choose to
subscribe to such an exchange point. In the example, the data
processing application as well as the data repository will
receive the published messages. A data stream is a continuous
series of related self-contained messages on a given exchange
point. There is a second exchange point for another data
product containing processed data that is consumed by an
event detector process. The physical deployment of all
applications is irrelevant. The Exchange realizes all
connectivity.

Fig. 7 depicts an exemplar scenario of how service clients
can adapt to the Messaging Service; we have implemented this
in current prototypes [15]. Services are identified by name
within the Exchange network throughout the entire system-of-
systems. Services are part of distributed applications; the
distributed service interaction protocol at every (service)
endpoint is implemented by a specialized protocol adapter.
Such protocol adapters are instantiated for each conversation
instance (see below for further details) through protocol
factories; the protocol adapters provide the binding element to
the actual service application and its functionality. A typical
mechanism of implementing protocol adapters is using Finite
State Machines (FSM). FSMs represent each distinguishable
protocol condition as a separate state, with defined transitions
between states when messages are sent or received, leading to
very predictable and robust distributed implementations. We
have prototyped several interaction styles between service
applications, including direct point-to-point interaction, topic
based publish/subscribe fan-out queues and worker queues
that facilitate reliable load-balanced applications. The
Messaging Service hides the fact that service applications are
connected to different message brokers that are operated in
different domains of authority.

Messaging Service
(Exchange Spaces with Exchange Points)

Protocol Factory

Finite State Machine
Protocol Adapter

s1

s2

in_event[guard]/
out_event

FSM

Messaging Service
Adapter

Service Application
“service_B”

Protocol Adapter

Protocol Factory

Service Application
“service_A”

Messaging Service
Adapter

Protocol Factory
Messaging Service

Adapter

Protocol Adapter

Service Application
“service_C”

AMQP Message
Broker #1

AMQP Message
Broker #2

Fig. 7. Messaging Service and service client adapters prototype

Communities and Agents

Our approach in distributed computing is based on the
premise that independent entities interact in order to pursue
shared goals. Entities can represent users, processes, resources
and communities.

Entities in the system are represented by their agents. Each
entity (or their agent on their behalf) can form any number of
relationships with other entities. Relationships are based on
mutual (bilateral) agreements between two entities, the results
of a successful negotiation. Each entity tracks the
consequences (i.e., commitments [9], [16]) of such agreements
(i.e., contracts) with other entities. Each observable atomic
action of an entity, such as sending a message, that causes a
side effect leads to a change and reevaluation of the aggregate
set of commitments of the entity towards other entities.

Entities communicate and collaborate within communities.
A community is a specific type of entity in itself.
Communities serve multiple purposes in our architecture,
including providing a backstop for contracts, providing a locus
for naming, and providing a venue to share resources in some
uses including infrastructure. A community is represented by a
specification that defines the rules for joining the community.
Joining a community requires accepting the rules of the
community, and the community will provide the registrant
entity with a local name and address.

Entities may request to enroll (i.e., participate) in
communities or can be invited by other member entities into
the community. Enrollment is a symmetric process of
negotiation. Entities negotiate the conditions under which they
participate in the community and vice versa. If agreement is
reached, the resulting contract builds the basis for relations
with other community members.

Communities can form relationships with other
communities, enabling the members of one community to
interact with the members of another community, instituting
the specifications of both communities. By contract, the
community members are bound to the community
specification with its rules, so there is no need for explicit
compliance checking (i.e., policy enforcement) and members
can interact directly. There might be an imposed requirement
for members to leave behind audit trails for later evaluation,
same as a tax rule not being directly enforced with every
transaction, but which may be audited for compliance to the
"state" community tax rules later for each member taxpayer.

We call the set of rules that communities (or other entities)
impose policy. Policy to access a resource entity for instance
might be an aggregate of many rules, such as the resource
owner's rules, the community's rules, and any underlying
obligations as consequence of membership.

Conversation Management

Communication between two entities occurs as part of a
conversation. A conversation presumes a contract is in place
between the two entities intending to converse. This contract

Collaboration
Agreement

Membership
Agreement

Commitment

<< Interaction Interface >>
Instrument Control

 Authentication

<< Service Interceptor >>
Instrument Role

Documention

Policy
Enforcement

<< S
ervice B

inding >>
Instrum

ent R
ole

Instrument State

Instrument Logic

<< Resource Constraints >>
Owner's Policy

<< Block of Capability >>
Instrument Implementation

Controller Role

Controller State

Controller Logic

Controller Implementation

C
on

tro
lle

r R
ol

e

<< Collaboration Contract >>
Researcher's Commitment

<< Membership Contract >>
Observatory's Commitment

<< Resource Authority >>
Instrument Owner

Researcher's Policy

Instrument Owner's
Commitment

Observatory's Commitment
Researcher

Policy

Policy

Researcher's Authority Domain

<< Environmental Constraints >>
Infrastructure Policy

<< Operational Authority >>
Observatory

<< Message >>

<< Capability Container >>
Instrument Owner's Authority Domain

Commitment
Accounting

Authentication

Documention

Policy
Enforcement
Commitment
Accounting

<< Service Interface >>
Instrum

ent R
ole C

on
tro

lle
r R

ol
e

Fig. 8. Collaboration and policy framework example

must include the common knowledge of an interaction pattern
that provides a template for the conversation, with the
conversation being an instantiation of the pattern. The actual
interaction as part of the conversation must comply with the
template of the interaction pattern. Each interaction (sending
and receipt of a message) potentially causes change in the set
of commitments related to the conversation and, thus,
indirectly to the commitments between the two entities.
Interaction patterns are thereby distributed
Assumption/Commitment specifications, in particular also for
policy. Each entity can independently monitor the fulfillment
of the interaction pattern and contract for the other entity and
for itself (and initiate protective or compensating action
otherwise). Each party would thus update its commitment
store based on each message it sends or receives. Each entity
can engage in as many different conversations with different
(or the same) entities concurrently as it likes. At any given
instant, the effective set of commitments from the point of
view of the entity is defined; each interaction can be traced
back to a conversation.

We specify interaction patterns using Message Sequence
Charts (MSCs, see [7], [9], [12]). We also define a language
for commitments that are made and released for each
interaction in an interaction pattern. We provide a logical
framework to reason over the aggregate set of commitments
over time and deduce any implications. Currently, we use a
rules engine to implement such a mechanism.

The COI provides collaboration, agreement support, and
policy enforcement capabilities. Fig. 8 illustrates this pattern
for the base case of a single service provider (instrument
owner) and consumer (researcher). The pattern generalizes to
arbitrary numbers of participants in a service orchestration.

Conceptually, the example captures the establishment of a
service agreement between two parties; for example, this
could unfold between a regional cabled observatory (service
provider) and a buoy-based global observatory (service
consumer). Each one of the parties has established contractual
commitments with their respective user communities,
including membership agreements. Upon the establishment of
mutual commitments, a contract between the two parties is in
place. Further, each party operates under its own set of
policies. The negotiation and contracting process, as well as
the actual service usage, leads to an interaction pattern
between the two parties that is constrained by the contractual
commitments and policy declarations of both parties.

Because each Capability Container is equipped with plug-
ins for orchestration, governance, policy enforcement, and
monitoring/audit, the deployment mapping for the
collaboration and policy framework is straightforward: the
corresponding interaction interface is stored and accessed CI-
wide. Each party’s Capability Container orchestration
component executes the projection of the interaction pattern
on their respective roles to participate in the overall
collaboration. The governance and policy constraints are
extracted from the interaction interface and provided to the
corresponding Capability Container plug-ins for monitoring
and enforcement.

The COI, through the use of the CI capability container,
factors out the common aspects of communication, state
management, execution, governance, and service presentation
to provide a highly scalable, secure and extensible model for
managing user-defined collections of information and taskable
resources. This ability to integrate resources of different types
implemented by different technologies is the central value

Fig. 9. Resource, resource agents and resource proxies connected to the Messaging Service

proposition of the architecture. It provides the basis for an
integrated observatory network that will remain viable and
pertinent over multiple decades.

Protocols are defined through interaction patterns. The
interaction pattern (or projection thereof) represents the
interaction interfaces of entities (i.e., components). The
projection of a protocol on one party can be represented as a
Finite State Machine (FSM). We use FSMs as protocol
machines that bind the communication endpoint on an
asynchronous reliable message-based system to the
application logic. Fig. 7 shows the use of FSMs as protocol
adapters for service applications involved in a conversation as
defined by an interaction pattern.

Fig. 9 shows an exemplar scenario for the application of
agents for the management of physical resources such as
sensors, and of services in a distributed environment. Agents
interact via the Messaging Service. Services themselves use
the Messaging Service for inter-service conversations as
explained above. In this case, the services’ agents provide the
management and control for the service, such as
starting/stopping the service and granting access. Finite State
Machines as protocol adapters ensure that the agents and
service protocols are always in a consistent distributed state,
ensuring robustness of the entire system. Service protocol
adapters provide access to the service; Managed Resource
Agent protocol adapters provide access to the respective
resource agents. Resource agents provide monitoring and
control of resources, advertise and grant access to resource
capabilities and manage the contractual relations and
commitments of the resource to its environment on behalf of

the resource. All these agent interactions occur in form of
conversations based on defined interaction patterns. Proxy
Resource Agents provide similar capabilities and interaction
patterns but act as proxies or supervisors of Managed
Resource Agents. Thereby, policy can be applied at various
levels within the system through a chain of responsibility.

Distributed IPC Facility

We are currently investigating a special case of community
called the Distributed Inter-Process Communication Facility
(DIF) [5]. Entities, representing processes that require inter-
process communication (IPC), enroll in this community and
are assigned a name valid throughout the community as well
as an address that the community uses internally to direct
communication. The resources of the community are local
endpoints of the DIF, which provide resource allocation
(open/close a connection to another named endpoint) and
read/write capabilities.

This DIF facility is intended to be the underlying distributed
system primitive within the OOI system-of-systems. As is
apparent, in conceptual terms, DIFs relate naturally to the
notion of communities that we motivated in the foregoing.
Other communities will be defined applying similar patterns
for other purposes than communication, such as scalable,
elastic computing environments, with entities including the
requestors of a service and the responding nodes.

The power of the DIF model is that it can be stacked in
order to increase scope. One DIF can leverage a lower level
DIF for communication purposes and present a DIF facility of
larger scope to its member entities. Thereby, the design of

how to architect the communities becomes the driving element
in the architecture of a distributed system. Any topology and
architecture is possible here, exceeding pure layered
architectures.

IV. SUMMARY

The Ocean Observatories Initiative faces the enormous
challenge of building a cohesive distributed system-of-systems
that incorporates a large number of autonomous and
heterogeneous systems, deals with instruments and
computational resources of a wide range of capabilities, serves
the needs of diverse stakeholders, and accommodates change
over the timescale of decades. A carefully thought out
architecture is key to addressing this challenge. We find that
simplicity wins and a few core principles help us organize the
OOI properly. These principles include (1) emphasizing loose
coupling through message-based interactions; (2) recognizing
the autonomy of the participants by modeling them as agents
rather than as traditional objects or pure services; (3)
identifying repeating structures (as evinced in our choice of
Rich Services, Capability Containers, DIFs, and communities);
and capturing and making explicit business-level interactions
through first-class status for policy and governance.

ACKNOWLEDGMENT

The OOI Cyberinfrastructure program is funded through the
JOI Subaward, JSA 7-11, which is in turn funded by the NSF
contract OCE-0418967 with the Consortium for Ocean
Leadership, Inc.

REFERENCES
[1] Ocean Observatories Initiative (OOI). Program website,

http://www.oceanleadership.org/ocean_observing/ooi
[2] Advanced Message Queuing Protocol (AMQP). AMQP Working Group

Website http://www.amqp.org/

[3] Amazon.com, Amazon Web Services for the Amazon Elastic Compute
Cloud (Amazon EC2). http://aws.amazon.com/ec2/.

[4] M. Arrott, B. Demchak, V. Ermagan, C. Farcas, E. Farcas, I. H. Krüger,
and M. Menarini. Rich Services: The Integration Piece of the SOA
Puzzle. In Proc. of the IEEE International Conference on Web Services
(ICWS), Salt Lake City, Utah, USA. IEEE, Jul. 2007, pp. 176-183.

[5] J. Day. Patterns in Network Architecture: A Return to Fundamentals.
Prentice Hall, 2008.

[6] G. Banavar, T. Chandra, R. Strom and D. Sturman. A case for message
oriented middleware. Proc. of the 13th International Symposium on
Distributed Computing, pp. 1–18, 1999.

[7] M. Broy, I. H. Krüger, and M. Meisinger. A Formal Model of Services.
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 16, no. 1, p. 5, Feb. 2007

[8] A. Chave, M. Arrott, C. Farcas, E. Farcas, I. Krueger, M. Meisinger, J.
Orcutt, F. Vernon, C. Peach, O. Schofield, and J. Kleinert.
Cyberinfrastructure for the US Ocean Observatories Initiative: Enabling
Interactive Observation in the Ocean. In Proc. IEEE OCEANS'09
Bremen, Germany. IEEE Ocean Engineering Society, May 2009.

[9] A.K. Chopra and M.P. Singh. An Architecture for Multiagent Systems:
An Approach Based on Commitments. Proceedings of the AAMAS
Workshop on Programming Multiagent Systems (ProMAS). May 2009

[10] B. Demchak, V. Ermagan, E. Farcas, T.-J. Huang, I. Krüger, and M.
Menarini, “A Rich Services Approach to CoCoME,” The Common
Component Modeling Example: Comparing Software Component
Models, A. Rausch, R. Reussner, R. Mirandola, and F. Plasil (Eds.),
Lecture Notes in Computer Science, no. 5153, ch. 5, pp. 85-115,
Berlin/Heidelberg: Springer-Verlag, Aug. 2008

[11] P.T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many
faces of publish/subscribe. Tech. Rep. DSC ID:2000104, EPFL, January
2001.

[12] I. H. Krueger, M. Meisinger, and M. Menarini. Interaction-based
Runtime Verification for Systems of Systems Integration. Journal of
Logic and Computation, Nov. 2008

[13] OOI CI Integrated Observatory Applications Architecture Document,
OOI controlled document 2130-00001, version 1-00, 10/28/2008,
available at http://www.oceanobservatories.org/spaces/display/FDR/
CI+Technical+File+Repository

[14] OOI CI Integrated Observatory Infrastructure Architecture Document,
OOI controlled document 2130-00002, version 1-00, 10/24/2008,
available at http://www.oceanobservatories.org/spaces/display/FDR/
CI+Technical+File+Repository

[15] OOI CI Messaging Service Prototype. http://www.oceanobservatories.
org/spaces/display/CIDev/Messaging+Service

[16] M.P. Singh. Semantical Considerations on Dialectical and Practical
Commitments. Proceedings of the 23rd Conference on Artificial
Intelligence (AAAI). July 2008, pp. 176-181.

	Select a link below
	Return to main menu
	Return to previous view

	Select a link below
	Return to main menu
	Return to previous view

